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Since diffuse intensity distributions calculated for 
the models with s = 1, where s is the number of layer 
units necessary to distinguish the stacking disorder, 
did not resemble the broad maxima observed in Fig. 
1, the various models with s = 2 were calculated. The 
results for the model of Table 1 were in agreement 
with the observed diffuse maxima, as shown in Fig. 4. 

In the model of Table 1, the sequences such as 
Q1-P1-Q1, in which the second-neighbor layers are 
the same, do not occur, and Q1-P1-Q2 and Q1-P1- 
Q3 occur with the same probability and so on. The 
distance between the ordered Ti sites which belong 
respectively to the second-neighbor layers are shorter 
for Q1-P1-Q1 than for Q1-P1-Q2 or Q1-P1-Q3 
and so on. The calculated results excluded sequences 
such as Q1-P1-Q1, Q1-P2-Q1, Q1-P3-Q1, Q2- 
P1-Q2 etc. This fact is reasonable with respect to the 
Coulomb interaction between Ti atoms and vacancies. 

The diffuse streaks have not yet been detected in 
X-ray photographs. The calculated intensities shown 
in Fig. 4 are the results of kinematical scattering 

theory. On the assumption that the geometry of the 
diffuse maxima is not affected by dynamical interac- 
tions, the model of Table 1 gives an explanation for 
the diffuse maxima observed. The designation 
Til.43S2-4H-Hx/~av/3a(SRO) is adopted for the struc- 
ture discussed above, according to the notation sys- 
tem for polytypes and superstructures described pre- 
viously (Onoda & Saeki, 1983). 
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Abstract 
Tetrahedrally close packed (t.c.p.) metal or alloy crys- 
tal structure types are those in which the interstices 
are exclusively tetrahedral and the coordination types 
are restricted to a particular set of four, which are 
here called P, Q, R, and X, with fully triangulated 
coordination polyhedra and coordination numbers 
(CN) respectively 16, 15, 14, and 12. At least 20 of 
these are known. Yarmolyuk & Kripyakevich [Kris- 
tallografiya (1974), 19, 539-545; Soy. Phys. Crystal- 
logr. 19, 334-3371 have shown empirically that the 
coordination formula of a t.c.p, structure, which may 
be represented in general as PpQqR~Xx, can be refor- 
mulated as (PX2)i(Q2R2X3)j(R3X)k (where i,j, k are 
integers or rational fractions) in the cases of all of 
the 16 t.c.p, structure types then known. This has also 
proved true for the four structure types discovered 
since. It is shown that the relationship results from 
the requirement that the structure average of the 
dihedral angles in the interstitial tetrahedra must 
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closely match the appropriately weighted average of 
the up to four 'cluster' average dihedral angles, where 
a cluster is defined as an atom plus the 16, 15, 14, or 
12 atoms of its coordination shell, and the associated 
28, 26, 24, or 20 tetrahedra, respectively, coming 
together at the central atom. These cluster averages 
are themselves within about 0.1 ° of the dihedral angle 
in the regular tetrahedron, 70.529 °. Given the integers 
p, q, and r for a t.c.p, formula, with this model x can 
be calculated correctly for all 20 known t.c.p, struc- 
tures (although x covers a wide range, up to 49), 
without any assumptions from Yarmolyuk & 
Kripyakevich being invoked. A related problem, con- 
cerning the close packing of atoms in amorphous 
metallic glasses, has been treated by some workers in 
relation to the {3,3, 5} regular polytope in four- 
dimensional space. We conclude that while such treat- 
ments may provide useful insights for t.c.p, structures, 
they do not yet satisfactorily explain the Yarmolyuk 
& Kripyakevich observation. 
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Introduction 

The family of crystalline intermetallic phases charac- 
terized as tetrahedrally close packed (t.c.p.) contains 
at least 20 structure types having in common the 
following properties: (1) the interstices are exclus- 
ively tetrahedral (the tetrahedra with atomic centers 
as vertices being only moderately distorted, with 
ratios of longest to shortest edges not exceeding about 
4/3); and (2) the coordination types are limited to a 
particular set of four, which we here call P, Q, R, 
and X, with triangulated coordination polyhedra and 
coordination numbers (CN) of 16, 15, 14, and 12 
(icosahedral) respectively. These coordination types 
are present in various combinations in the different 
t.c.p, structure types; only CN12 is present in every 
t.c.p, structure type, although CN12 cannot exist 
alone; it is well known that no structure can exist in 
Euclidean space in which all atoms are icosahedrally 
coordinated. The t.c.p, structure types are exemplified 
by the Friauf-Laves phases, the/3-tungsten or Cr3Si 
structure, Z r a m l 3 ,  and the phases designated by the 
letters o, tz, P, R, etc. A list of all t.c.p, structures 
known to us, except polytypes of known structures, 
is given in Table 4. 

The 'empirical coordination formula' of a t.c.p. 
structure type may be represented in general as 
PpQqR~x. The values of p, q, r, and x are not all 
arbitrary or independent; a particular restriction on 
them is the subject of this paper. 

The role of the four above-mentioned coordination 
types was first recognized independently by Kasper 
(1956) and by Shoemaker, Shoemaker & Wilson 
(1957); geometry and bonding in t.c.p, structures has 
been described by Frank & Kasper (1958, 1959), by 
Shoemaker & Shoemaker (1964, 1972), and by 
Pearson & Shoemaker (1969). Reviews concerning 
the t.c.p, family of structures have been presented by 
Shoemaker & Shoemaker (1968, 1969, 1971a). A 
feature of the coordination types that will figure 
prominently in the present discussion is the presence 
of two different types of interatomic contacts (which 
for simplicity we here call 'bonds'), pointed out by 
Frank & Kasper (1959): sixfold or 'major' bonds, at 
which six interstitial tetrahedra come together, and 
fivefold or 'minor' bonds, at which five interstitial 
tetrahedra come together; these correspond to sixfold 
and fivefold vertices on the corresponding coordina- 
tion polyhedra. The four coordination polyhedra are 
shown in Fig. 1, and the relevant properties of the 
four coordination types are summarized in Table 1. 
The 'major bonds' link together to form what Frank 
& Kasper termed the 'major network' of a structure. 

Yarmolyuk & Kripyakevich (1974), hereinafter 
designated as Y & K, observed that for every one of 
the 16 then known t.c.p, structure types the empirical 
coordination formula can be recast in the form 

PpQqR,.Xx -~ ( PX2),( Q2R2X3)j( R3X)k. (1) 

Table 1. Zc.p. coordination polyhedra 

Ideal  point  No.  o f  vertices 
Type  symmetry  5-fold 6-fold 

P CN16 Td-43m 12 4 b 
Q CN15 D3h-()m2 12 3 b 
R CNI4 D6d-12.2. m 12 2 b 

_ _  

X CN12 a lh-532/m 12 0 

No. o f  
faces c 

28 
26 
24 
20 

Notes: (a) Regular, or approximately regular, icosahedron. (b) Respectively 
disposed tetrahedrally, trigonally in plane, and digonally on axis, with 
respect to the center of the polyhedron. (c) Also equal to the number of 
interstitial tetrahedra defined by the vertices of the faces and the center of 
the polyhedron. 

Here i,j, and k are integers or simple rational fractions 
for crystalline structure types, and PX2, Q2R2X3, and 
R 3 X  a r e  the respective formulae of the Friauf-Laves 
phases [e.g. C15-MgCu2 (Friauf, 1927b; Laves & 
Witte, 1935)], the Z phase [a designation we use here 
for ZraA13 (Wilson, Thomas & Spooner, 1960)], and 
the 'A 15' structure type of so-called/3-tungsten (H/igg 
& SchSnberg, 1954) and Cr3Si (Bor6n, 1933). We will 
refer to these henceforth as the three 'base' structure 
types. [The Friauf-Laves phase C14-MgZn2 (Friauf, 
1927a; Laves & Witte, 1935) behaves in our treatment 
in this paper exactly like C 15-MgCu2 when the axial 
ratio and positional parameters have their ideal 
values, and will not be mentioned specifically again 
except in Table 4.] Y & K gave examples of how 
some complex structures can be built up of fragments 
of the three base structure types, but recognized that 
'the most complex structure types are not obliged to 
be combinations of the corresponding fragments'. 

That the observation of Y & K has predictive power 
is illustrated by the fact that the four structure types 
known to us that have been determined since the 

(a)  

(c) 

(b) 

J 
(d) 

Fig. 1. Coord ina t ion  po lyhedra  for  (a)  CN12,  (b) CN14,  (c) 
CN15,  (d )  CN16.  Central  a tom is not  shown in each case. Atoms 
connec ted  to central  atoms by major  bonds  are stippled. Adap ted  
from Pearson (1972). 
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publication of the Y & K paper also fit equation (1); 
these are the K phase Mn77Fe4Si19 (Shoemaker & 
Shoemaker, 1977), the I phase V41Ni368i23 
(Shoemaker & Shoemaker, 1981), the H phase 
(Ye, Li & Kuo, 1984), and K7Cs 6 (Simon, Br/imer, 
Hillenkrtter & Kullmann, 1976). The first two of these 
are very complicated, containing over 200 atoms per 
unit cell with low symmetry. The total success to date 
of the Y & K observation in delimiting the empirical 
formulae of t.c.p, structures entitles us, we belive, to 
refer to it henceforth in this paper as the 'Y & K 
principle'. 

It is an evident consequence of the Y & K principle 
that for every t.c.p, structure type q - r. Nevertheless, 
for convenience, we may also find useful a potentially 
more general formulation, 

PpQqR,Xx-~(PX2)p(QX7/6)q(RX,/3)r, (2a) 

where 

p= i, q= 2j, r= 2j+ 3k. (2b) 

This formulation fits all known t.c.p, structure types 
because 

Q6X7 = 3(QeRzX3) - 2(R3X), 

although there is no known structure type for Q6X7 
itself. 

It is apparent from equation (2a) that when the 
numbers of CN16, CN15, and CN14 atoms are given, 
the number of CN12 atoms is determined. Henceforth 
in this paper we will take as the algebraic expression 
of the Y & K principle the following: 

x=2p+7q/6+r /3 ,  q<- r. (3a, b) 

The three 'pseudo-base' formulae of equation (2a) 
can be denoted by the single expression MzX,, where 
for M = P ,  Q, and R, z - ( C N - 1 2 ) = 4 ,  3, and 2 
respectively, and n =2, 7/6, and 1/3 respectively. 
When M is any mixture of P, Q, and R, z is an average 
given by 

z=(4p+3q+2r) / (p+q+r) .  (4a) 

Since, from equation (3a), 

n = (2p+  7q/6+ r/3)/(p+ q+ r) 

we have 

z=(6n+8)/5,  n=(5z -8 ) /6 .  (4b, c) 

The fraction of atoms that are CN12 is given by 

f = x / ( p + q + r + x ) = n / ( n + l ) .  (5) 

In terms off ,  from equations (4) and (5) we have 

z = ( 8 - 2 f ) / ( 5 - 5 f ) ,  f = ( 5 z - 8 ) / ( 5 z - 2 ) .  (6a, b) 

For the Z phase (Q2R2X3), for example, wi thf  = 3/7, 
equation (6a) correctly gives z=2.5.  The average 
coordination number, CN, is (z+12) ( l - f ) +  12f, or 

C N =  12+ 12z/( lOz-4)= 12+ ( 8 - 2 f ) / 5  

= 13 .6-0 .4f  (7) 

for all known t.c.p, structures. (An equivalent 
equation has been given by Y & K). For the C15 
structure type PX2, the Z-phase structure type 
Q2R2X3, and the A15 structure type R 3 X  , this 
equation gives 13.333, 13-429, and 13.500 respec- 
tively; in consequence of the Y & K principle, all 
t.c.p, structures must have CN values in the range 
13-333 to 13.500. 

Y & K did not present any explanation of their 
observation (beyond a demonstration that a few struc- 
ture types can actually be constructed from fragments 
of the three base structures), nor any proof that all 
t.c.p, structure types yet to be discovered must con- 
form to it. We will present here an explanation which 
we believe goes a long way toward constituting a 
proof of that part of the principle that is contained 
in equation (3a). 

We shall not in this paper discuss certain metal 
and alloy structure types which in certain respects 
resemble t.c.p, structures but violate the strict 
definitions used by Y & K and ourselves, in having 
some CN's different from 16, 15, 14, and 12, and 
some interstices that are not tetrahedral. These 
include, among others, a-manganese (Bradley & 
Thewlis, 1927), the isostructural X phases, the D 
phase MnsSi2 (Shoemaker & Shoemaker, 1976), the 
y-brass structure types D81_3 [e.g. CusZn8 (Bradley 
& Gregory, 1931)], and several very complicated 
structure types determined by Samson (1968): 
y-Mgl7ml2 (related to a-Mn), e-Mg23A13o (a distor- 
tion of the R-phase structure type), NaCd2 and the 
closely related fl-Mg2A13, and CuaCd 3. The last three 
of these are extremely complicated and have very 
large cubic unit cells. The structures of Samson, like 
many t.c.p, structures, are described by him as being 
built up of many CN16-atom-centered 'Friauf poly- 
hedra' (truncated tetrahedra, formed by the 12 minor- 
bond vertices around CN16) and CN12 icosahedra; 
generally they contain as well some CN14 and CN15 
atoms, but they possess also coordinations not present 
in true t.c.p, structures. Other structures bearing some 
relation to t.c.p, structures have been described by 
Cenzual, Chabot & Parth6 (1985). We also do not 
include among the t.c.p, structure types enumerated 
here those that are polytypes of the Friauf-Laves 
phases and therefore automatically conform to the Y 
& K principle and its consequences, for example the 
C36 structure type [MgNi2 (Laves & Witte, 1935)], 
and several more complex polytypes based on the 
Friauf-Laves phases (e.g. Komura & Kitano, 1977). 

The role of dihedral angles 

We have looked for a long time without success for 
some explanation of the Y & K principle in 
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geometrical properties such as those of the major 
networks of the t.c.p, structures. However, while the 
major networks by themselves define the numbers of 
P, Q, and /o r  R atoms present, they present no clear 
indication of the relative numbers of X atoms needed 
to complete the structure, unless each structure is 
drawn out in detail. In other words, they do not 
contain the information given in equation (3). In this 
paper we will show that this additional information, 
and thus an explanation of the Y & K principle, is 
provided by a requirement on the average dihedral 
angles between faces of the interstitial tetrahedra 
meeting at an edge, or a tom-atom 'bond' ;  we call this 
requirement the 'dihedral-angle principle'. 

Since the dihedral angles between tetrahedral faces 
joining at a given bond must sum to 360 °, the average 
dihedral angle around a given bond is 360°/g, where 
g is the coordination number of the bond; thus for 
fivefold or 'minor '  bonds the average dihedral angle 
is 72 °, and for sixfold or 'major '  bonds it is 60 °. The 
dihedral angle in a regular tetrahedron is 

0o = cos -~ (1/3) = 70.529 ° (8) 

and the corresponding effective bond coordination 
number is 

go = 360°/70"529° = 5-104. (9) 

We here state the 'dihedral-angle principle', in the 
first approximation, as requiring that the relative num- 
bers of P, Q, R, and X atoms must be such that the 
average dihedral angle 0 is close to 0o. 

The applicability of this principle in this first 
approximation to demonstrating the validity of the 
Y & K principle depends on the degreee of approxi- 
mation inherent in the assumption that the distortions 
of the regular tetrahedron to the tetrahedra present 
in the t.c.p, structures p roduceonly  small changes in 
the average dihedral angle 0. By the calculus of 
infinitesimals it can be shown that any infinitesimal 
distortion or combination of distortions of an initially 
regular tetrahedron does not change the average dihe- 
dral angle. For finite distortions the changes in the 
average dihedral angle 0 are zero to first order in 
the displacements, and generally finite in higher 
orders. 

We have computed average dihedral angles in 
tetrahedra that are distorted from regularity in various 
ways subject to the earlier stated restriction that the 
ratio of the largest to the smallest edge not exceed 
4/3. We found that the change in average dihedral 
angle varies roughly quadratically with the distortion 
parameter; about a third of the distortion modes 
increase the average dihedral angle, and the rest 
decrease it, in all but two cases by no more than about 
three quarters of a degree. The exceptions are the 
prolate D2d distortion, with a maximum average dihe- 
dral-angle change of -0 .90  ° at an edge-length ratio 

4/3, and the oblate D2a distortion, which gives -0 .96  ° 
at an edge-length ratio of 1.2 and -3 .2  ° at a ratio of 
4/3. The prolate distortion occurs in the A 15 structure 
(R3X), where the two opposite short edges of the R4 
tetrahedron are major bonds and the other four are 
minor bonds. (A large DEal oblate distortion appears 
not to be possible in t.c.p, structures; it would seem 
to require that most or all of the four shorter edges 
be major bonds.) A possibly more important distor- 
tion mode for t.c.p, structure types is a C2~, mode 
obtained by shortening one of the six edges. This is 
found, for example, where one of the edges is a major 
bond. For a 25% shortening of one bond the average 
dihedral angle changes by -0.100% Another impor- 
tant type of distortion found is C3~, oblate or prolate, 
which gives modest increases in the average dihedral 
angle. 

If we exclude the oblate O2d mode, and take into 
account the fact that the edge-length ratio limit of 
4/3 is uncommonly approached very closely, on 
averaging over the wide variety of distortion modes 
found in a t.c.p, structure we should not be surprised 
that 0 differs from 0o by not more than about a tenth 
of a degree, as may be seen in Table 4. 

Actual values of tetrahedron-average and global- 
average dihedral angles for the t.c.p, base structures 
are given in Table 2. It may be remarked that notwith- 
standing the prolate DEd distortion mentioned above, 
which is very prominent in the A15 structure, the 
deviation of the average dihedral angle for that struc- 
ture from the ideal value, O -  0o, is only -0 .094 °. The 
deviation is smaller for the other structures. The A 15 
(R3X) and C15 (PX2) structures are 'end members'  
of the t.c.p, series, if the members of that series are 
ordered according to z. They are simple structures, 
highly constrained by symmetry, and accordingly 
might be expected to have tetrahedral distortions 
about as large as any that are likely to be found in 
the other structures. 

In Table 3 are given the local values of the average 
dihedral angle for the various type of 'clusters' found 
in the base structures. For the purposes of this paper, 
a cluster is defined as an atom plus the 16, 15, 14, or 
12 atoms of its coordination shell, and the associated 
28, 26, 24, or 20 tetrahedra, respectively, coming 
together at the central atom. Here again the A15 
structure shows the largest deviation, namely -0-111° 
for the R atom. 

Let us now attempt to employ the dihedral-angle 
principle to see if, given the values of p, q, and r for 
any of the 20 known t.c.p, structures, we can calculate 
a value of x that (when rounded to the nearest integer) 
agrees with the observed value, which is also the value 
calculated with equation (3a). For the purpose of 
this treatment p, q, r, and x are taken to be relatively 
prime integers. 

For any t.c.p, structure formula, i.e. for any given 
set of values of p, q, r, and x, the global-average 
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Table 2. Dihedral-angle analysis of  the t.c.p. 'base' 
structures 

0(0) Maximum No. of  
0(°) av. for edge tetrahedra 

Tetrahedron range tetrahedron ratio per formula 

(|) AI5 (Cr3Si) 
R 4 53.13-78.46 70.019 1.22 3 
R3X 58.41 -77.40 70.432 1.22 12 
R3X' 67"79-73"40 70'595 1"08 8 

O= 70'435 Total 23 

(II) Z (Zr4AI3) 
Q2R2 52.77-77.16 70.236 1.27 6 
Q 2 R . X  63.62-75.99 70.521 1.13 12 
QRX 2 64-17-76-42 70.647 i- 13 12 
R2X 2 59.61-75.61 70.341 1' 13 6 
QX 3 67.49-73.78 70.631 1.15 4 

O= 70.500 Total 40 

(III) C!5 (MgCu 2) 
P2X2 60-00-73.22 70.569 1.22 12 
PX 3 67.12-74.21 70.661 1' 22 4 
X 4 70.29 70-529 1.00 1 

0= 70-588 Total 17 

Table 3. Cluster averages of  dihedral angles in the 
three base structure types 

CN type CN16 CN15 CN14 CN12 
Central atom P Q R X 
No. of  atoms in cluster 17 16 15 13 
No. of tetrahedra 28 26 24 20 
Average dihedral angle 68.571 69.231 70.000 72.000 

at central atom 

P X  2 (C l5 )  
Q2R223 (ZraAl3) 

RaX (A15) 
Cluster average over 

the three base 
structures 

Cluster average, 
regular icosahedron 

Average dihedral angles (°) 
6~ ~q ~r ~x 

70.582 70.593 
70-493 70-436 70-557 
70-493 

70.418 70.497 
70.582 70.493 70.427 70.549 

70.547 

dihedral angle /~ can be calculated: 

[ ( 4 p + 3 q + 2 r ) .  6 . 6 0 ° +  12. ( p + q + r + x ) .  5.72 ° ] 

×[(4p+ 3q+ 2r) . 6+12.  (p+ q+ r+ x) . 5] -1 

= 60 ° . (16p + 15q + 14r+ 12x) 

× (14p + 13q + 12r+ 10X) -1. (10) 

In terms of the reduced formula M z x ,  this equation 
becomes 

/9=60 ° . [ z + 1 2 ( n + l ) ] / [ z + 1 0 ( n + l ) ] .  ( l l a )  

[If we combine this equation with equations (4) and 
(6), containing the results of the Y & K principle, we 
obtain 

0 = 9 0  °. ( l l z - 4 ) / ( 1 4 z - 5 )  

=60 ° . (34 - f ) /  (29 - f ) .  ( l l b ) ]  

As special cases of equation (10), the average dihedral 
angle at a given central atom is obtained as 60 ° times 

16/14, 15/13, 14/12, and 12/10 for P, Q, R, and X 
respectively; the resulting values are given in Table 
3. Alternatively, these values can also be obtained 
with the expression 360°/(6 - 12/CN), derived from 
the Euler relation V =  1 2 / ( 6 - q ' )  for triangulated 
polyhedra, where V = CN = number of vertices and 
q ' =  g = (average) number of triangular faces meeting 
at a vertex. (The global average 0 can also be easily 
obtained as the appropriately weighted average of 
these central atom values.) From equation (10) we 
can easily obtain 

/~-00 = [p(16.60 ° -  140o)+ q(15.60 ° -  130o) 

+ r (14.60 ° -  120o) + x ( 1 2 . 6 0  ° -  100o)] 

× (14p+ 13q+ 12r+ 10x) -~ 

On setting this equal to zero as required by the dihe- 
dral-angle principle in its first approximation, we 
obtain 

x--1.8631p+1.1473q+O.4315r, (12) 

to be compared with equation (3a) with its 
coefficients of 2, 1.1667, and 0.3333. We have calcu- 
lated x with equation (12) for all 20 t.c.p, structures, 
given the values of p, q, and r for those structures. 
The calculated x values are encouragingly close to 
the true ones, but fail in nearly half of the cases to 
round to the correct integer; the largest discrepancy 
is for the p phase (Shoemaker & Shoemaker, 1971b), 
where the calculated and actual x values are 39.912 
and 37 respectively. Even so, the error in x is in this 
case only 7-9%. Thus the dihedral-angle principle in 
its first approximation appears to explain equation 
(3a) in essence but is incapable of ruling out devi- 
ations from that equation in t.c.p, structures yet to be 
determined, especially when x is not a small integer. 

Clearly the variability in dihedral-angle averages 
for the tetrahedra, while small, needs to be taken into 
account. It is evident from the data in Tables 2 and 
3 that the variability in the individual 'cluster 
averages' Op, Oq, Or, and /~x should be smaller than 
that in the individual tetrahedra themselves. Over the 
structure as a whole, the average of cluster averages, 
weighted with the numbers of tetrahedra in the 
respective clusters, is 

0cz = (28pOp + 26q0q + 24rOt + 20x/~x) 

x (28p + 26q + 24r + 20x) -1. 

If we divide numerator and denominator by 2 and 
combine with equation (10) we obtain 

0-~7cz = [p(16.60 ° -  140p) + q(15.60 ° -  130q) 

+ r(14.60 ° -  120r) + x(12.60 ° -  100x)] 

x (14p + 13q + 12r+ 10x) -1. (13) 

When the values of the respective cluster averages 
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from Table 3 are entered and the expression is set 
equal to zero, we obtain 

x = 1.9399p + 1.1309q +0.3531r. (14) 

This is clearly a much better approximation to 
equation (3 a) than is equation (11). When it is applied 
to the 20 t.c.p, structures, the calculated x value fails 
to round to the correct integer in four cases; the largest 
deviation is found for the T phase, Mg32(Zn, ml)4 9 
(Bergman, Waugh & Pauling, 1957), for which the 
calculated and actual values of x are 47.702 and 49 
respectively, differing by only 2.6%. The predictive 
power of the dihedral-angle principle in this approxi- 
mation for t.c.p, structures has improved but is still 
somewhat limited. 

Any further refinement of the dihedral-angle prin- 
ciple must take into account the fact that the cluster 
averages 0r and 0x, at least, are demonstrably variable 
among the base structure types in which the respective 
clusters are found. The cluster averages 0p and 0q 
may also be variable, but as P and Q are each present 
in only one base structure type there is no basis for 
predicting any particular sort of variability. We note 
that among the three base structures, Ox increases 
with increasing CN in a monotonic (though non- 
linear) manner; O~ also increases with increasing CN 
between the two base structures that contain R. We 
note also that the X clusters in C15 contain 6 atoms 
of CN > 12, those in the Z phase contain 8, and those 
in A15 contain 12; of the 20 tetrahedra in each X 
cluster, 12 in C15, 8 in Z, and 12 in A15 have a major 
bond as one edge. The major bonds are generally 
significantly shorter than the minor bonds between 
the same two given atoms; however the P - P  major 
bonds do not differ appreciably from the P - X  minor 
bonds which are the other edges of the P2X2 tetrahe- 
dron in C15 because, in compensation, the P atom 
is larger than the X atom. However, the major bond 
found in the corresponding tetrahedron in the Z 
phase is shorter than the other edges, and this is true 
to a much greater extent in A15. The effect is to distort 
many of these tetrahedra in such a manner 
(approximating the C2v mode described earlier) as 
to decrease the average dihedral angles significantly; 
the effect increases in going from C15 to Z to A15. 
A similar situation exists for the R clusters also, in 
the range from Z to A15. 

We will here assume that O~ and Ox do vary 
monotonically with changing content of higher coor- 
dinated atoms in the clusters for all t.c.p, structures. 
Rather than to use CN as a parameter with which to 
express this variation we will use z, because, given p, 
q, and r, z can be calculated with equation (4a) 
altogether independently of the Y & K principle. We 
will make the simplest and most conservative possible 
choice of assumed manner of dependence of cluster 
averages on the parameter z: (1) the only cluster 
averages to be used as data are those of the three 

base structure types; (2) cluster averages for all other 
structure types will be obtained by linear interpolation 
between those given, where interpolation is possible; 
and (3) where interpolation is not possible the cluster 
averages will be held constant: 

j 70.346 + 0.0360z, 
fir / 

1.70.436, 

= ~70.257 + 0.1200z, 

0x (70.499 + 0.0233z, 

2.0<- z<- 2-5 [A15 to Z]  

2.5 < - z <- 4.0 [Z to C15] 
(15a, b) 

2.0<- z <- 2.5 [A15 to Z] 

2.5___ z<_4-0 [Z to C15]" 
(16a, b) 

When we substitute into equation (13) the 
individual calculated values of 0r and 0x from the 
above expressions, and the fixed values of Op, Oq, and 
(in the Z to C15 range) 0r from Table 3, and then 
set both sides of equation (13) equal to zero, calcu- 
lated values for x are obtained which are presented 
in the last column of Table 4. The agreement with 
the actual x values is very good in all cases. In only 
one case does the error exceed 0.14, namely for the 
aforementioned T phase, for which the calculated 
and actual x values are respectively 48.75 and 49, 
differing by only 0.51%. The maximum percentage 
error for all 20 structures is 0.67%. If we can assume 
that (say) 0.70% is a reasonable upper limit of error 
for any t.c.p, structure yet to be discovered, then we 
should not fear that the calculated x will round to a 
wrong integer unless x itself exceeds about 70. At 
least within this limitation we predict that for any 
t.c.p, structure yet to be discovered the result of the 
dihedral-angle treatment described here will agree 
with the actual composition found for that structure 
and thus confirm the prediction of that part of the Y 
& K principle that is contained in equation (3a). 

We have not provided any satisfactory explanation 
of the restriction of equation (3b). The best we can 
say about this restriction is that we have tried and 
failed to produce a hypothetical t.c.p, structure for 
Q 6 X 7  . We have seen in the A15 structure that infinite 
chains of R atoms can exist without Q or P atoms 
being present; however, a stacking of infinite sheets 
of major-bond-linked Q atoms generates an equal 
number of R atoms, giving the Z phase. We have not 
found a way to generalize this result to hypothetical 
structures in which the Q atoms are linked to different 
atoms and/or  in different ways. Perhaps at a later 
time a geometrical explanation will be found that will 
complete the explanation of the Y & K principle in 
the form given by those authors. 

Discussion 

In the Introduction we mentioned that no t.c.p, struc- 
ture can exist in Euclidean space in which all atoms 
are icosahedrally (CN12) coordinated. Such a struc- 
ture can exist, however, in a Riemannian curved 
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Table 4. Summary of data and results on t.c.p, structure types 

Lattice constants Equation (1) indicest Mzx. 
Ref- Space 

Type Example erence~ group a(A) b(A) c(/~) fl(°) N i j k p q r x z n 

AI5 CraSi a Pm3n 4.564 8 0 0 1 0 0 3 1 2.000 0.333 
tr Cr46Fe54 b P42/mnm 8-800 4.544 30 0 1 2 0 2 8 5 2.200 0.500 

H *  Complex c Cmmm 4-5 17.5 4.5 30 0 1 2 0 2 8 5 2.200 0.500 
v Mnsl.sSils .5 d lmmm 16.992 28.634 4.656 186 6 5 10 6 10 40 37 2.393 0.661 
Z Zr4AI 3 e P6/mmm 5.433 5.390 7 0 1 0 0 2 2 3 2.500 0.750 
P Mo42CrtsNi4o f Pbnrn 9.070 16.983 4.752 56 1 1 1 1 2 5 6 2.500 0.750 
8 MoNi g P212t2 t 9.108 9.108 8.852 56 1 1 1 ! 2 5 6 2.500 0-750 

K* Mn77Fe4Sit9 h C2 13-362 11.645 8.734 90.5 220 7 2 5 7 4 19 25 2-600 0.833 
R Mo31CrlsCosl i R3 10.903 19.342 159 8 3 2 8 6 12 27 2-846 1-038 
//. Mo6Co 7 j R3m 4.762 25.615 39 2 1 0 2 2 2 7 3-000 1.167 

- - *  K.7Cs 6 k P63/mmc 9.078 32.950 26 2 1 0 2 2 2 7 3-000 1.167 
p(r W6(F'e, Si)7 1 Pbam 9.283 7-817 4-755 26 2 i 0 2 2 2 7 3.000 1.167 
M Nb48Ni39AI13 m Pnarn 9"303 16.266 4.933 52 2 1 0 2 2 2 7 3"000 1"167 
-/* V41Ni368i23 n Cc 13.462 23'381 8.940 100"3 228 4 1 0 4 2 2 11 3"250 1.375 
C V2(Co , Si)3 o C2/m 17.17 4.66 7.55 99"2 50 6 1 0 6 2 2 15 3.400 1.500 
T Mg32(Zn, AI)49 p Ira3 14.16 162 20 3 0 20 6 6 49 3-438 !.531 
X Mn45Co4oSi15 q Pnnrn 15.42 12-39 4.74 74 10 1 0 10 2 2 23 3-571 1.643 
- -  MgaZn 7 r C2/m 25-96 5-24 14.28 102'5 110 16 1 0 16 2 2 35 3.700 1.750 

C14 MgZn 2 s P63/mmc 5-16 8.50 12 1 0 0 1 0 0 2 4-000 2.000 
C15 MgCu 2 t Fd3m 7-080 24 1 0 0 ! 0 0 2 4-000 2.000 

CN Xealc 

70"435 13"500 1'00 
70-465 13"466 4"98 
70"465 13"466 4"98 
70"489 13'441 37"11 
70"500 13'428 3"00 
70'500 13-428 6.04 
70-500 13"428 6-04 
70.510 13"418 25"14 
70"530 13'396 26"93 
70"540 13"385 6"96 
70"540 13"385 6'96 
70-540 13"385 6'96 
70-540 13.385 6"96 
70-556 13"369 10'94 
70'563 13"360 14-92 
70'565 13"358 48"75 
70"571 13"351 22"90 
70"577 13-345 34"89 
70"588 13"333 2"00 
70'588 13-333 2"00 

* Structures determined after publication of Y & K paper. 
t Indices in each set are taken as relatively prime. 
~: (a)  Bor6n (1933). (b) Bergman & Shoemaker  (1954); a similar atomic arrangement  exists in /3 -uran ium (a = 10.759, c = 5.656/~) (Donohue  & Einspahr,  1971). (c) Ye, Li & 

Kuo (1984); Fe > Cr > Ni > Mo > W, and C r > Co > M o > Fe > AI = Ti. (d)  Shoemaker & Shoemaker (1971 b). (e) Wilson, Thomas  & Spooner (1960); we have taken the liberty of  
naming this phase the "Z phase '  for convenience. (f) Shoemaker,  Shoemaker  & Wilson (1957). (g) Shoemaker  & Shoemaker (1963). (h) Shoemaker  & Shoemaker (1977); data 
given are for the substructure, which differs from the superstructure only in site compositions. (i) Komura,  Sly & Shoemaker (1960); data given are for the hexagonal  cell. (j) 
Arnfelt & Westgren (1935); data given are for the hexagonal cell. (k) Simon, Briimer, Hillenk6tter & Kul lmann (1976). (I) Kripyakevich & Yarmolyuk (1974); the same structural 
arrangement is found also in Th6Cd7 (a = 10.806, b = 9.954, c = 6.520 .~) (Fornasini,  Palenzona & Manfrinetti,  1984); we have taken the liberty of  assigning the designation 'ptr', 
which stands for 'pentagon sigma'. (m) Shoemaker  & Shoemaker (1967). (n) Shoemaker & Shoemaker  (1981). (o) Kripyakevich & Yarmolyuk (1970); their results are reported in 
space group B2/m. (p) Bergman, Waugh & Pauling (1957). (q) Yarmolyuk, Kripyakevich & Gladyshevskii  (1970); Manor, Shoemaker & Shoemaker  (1972). (r) Yarmolyuk, 
Kripyakevich & Melnik (1975); their results are reported in space group B2/m. (s) Friauf (1927a). (t) Friauf (1927b). (s) and (t) Laves & Witte (1935). 

3-space, if an atom is placed at each of the vertices 
of the {p', q', r'} = {3, 3, 5} regular polytope in a four- 
dimensional (4D) manifold. This polytope, which 
may be regarded as a 4D analog of the regular 
icosahedron in ordinary space, has 120 vertices, 720 
edges, 1200 faces, and 600 cells; the faces are equi- 
lateral triangles (p '=  3), three of which (q '=  3) come 
together at each vertex of a cell, which is a regular 
tetrahedron, and five cells ( r '=  5) come together at 
each edge (Coxeter, 1948). A stereofigure of a 3D 
projection of this polytope is shown in Fig. 2. In this 
curved-space t.c.p, structure model all atoms are 
CN12, the icosahedra and tetrahedra are regular, and 
all bonds are minor bonds. 

\ 

Fig. 2. Stereoscopic representation of a projection of the {3, 3, 5} 
regular polytope in 4-space onto a 3-hyperplane (Euclidean 
space). Since the projection is along a normal to a mirror plane 
in 4-space, the 120 vertices of the polytope project onto only 75 
points in 3-space. Calculated and plotted with a Corona PC-21 
microcomputer and Epson FX-80 printer using BASIC program 
POL YT335 (DPS). 

This polytope, and the complementary {5,3, 3} 
polytope (the cell of which is the regular pentagonal 
dodecahedron, the Voronoi polyhedron for an ideal 
icosahedrally coordinated atom) have been the focus 
of studies by several workers (Coxeter, 1958; K16man 
& Sadoc, 1979; Sadoc, 1980, 1983; Sadoc & Mosseri, 
1982; Rivier, 1982, 1983; Nelson, 1983) of coordina- 
tion in amorphous metallic glasses, and in such 
models of those substances as froths and compressed 
lead shot. Most of this work dealt with means of 
un-curving to Euclidean space the model described 
above, reducing its curvature to zero by introduction 
of 'disclination lines' which convert some fivefold 
vertices to sixfold vertices (and perhaps other kinds). 
In the extension of this idea to crystalline metals by 
Sadoc (1983) it is apparent that the 'disclination lines' 
are the lines and/or  linked line-segments that form 
the 'major networks' of Frank & Kasper (1959), at 
least where t.c.p, metals are concerned; for other 
crystalline metals and for metallic glasses this iden- 
tification may apply approximately. 

To consider the flattening of the {5, 3, 3} model of 
a froth, Coxeter (1958) used the Schl~fli (1950) 
criterion for curvature of the spaces of regular poly- 
topes and honeycombs: the quantity 

sin (1r/p') sin ( z r / r ' ) -  cos (~/q ' )  

is positive for a closed polytope in Riemannian 
(spherical) space, zero for an infinite honeycomb in 
Euclidean space, and negative for an infinite honey- 
comb in hyperbolic space. For Coxeter's {p',3,3} 
'statistical honeycomb' froth model in Euclidean 
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space, 

p'( = g ) =  zr/sin -~ (3 -~/2) 

= 2zr/cos -t  (1/3) 

= 2zr/0o = go = 5" 1043, 

where 00 is, as already stated, the dihedral angle of 
the regular tetrahedron. Thus this concept of flatten- 
ing space is consistent with our dihedral-angle prin- 
ciple in its first approximation, although among t.c.p. 
structures g actually ranges from 5.1000 to 5.1111. 

Sadoc & Mosseri (1982) suggested that the addition 
of disclination lines reduces the curvature of the ideal 
polytopic structure to zero owing to the introduction, 
along with the disclinations, of 'some regions of nega- 
tive curvature' which counteract the positive cur- 
vature of the original polytope. No quantitative ana- 
lytical method has been given by any of these authors 
for computing and combining these curvatures so as 
to predict, for example, the density of disclination 
lines needed to flatten the space occupied by the 
model. Our own attempts in this direction failed to 
yield a satisfactory prediction, for example, of the 
correct coefficients in equation (3a). 

While the main thrust of these workers has been 
on amorphous structures, as already mentioned 
Sadoc (1983) has attempted to apply these ideas to 
a few metal structures: the t.c.p, structures of fl- 
tungsten (A15), /3-uranium (or phase), and MgCu2 
(C 15), and the non-t.c.p, structures of a-manganese 
and body-centered cubic metals (A2). He anticipated 
some of our work by presenting for each the values 
of CN and g, determined empirically from the struc- 
tural data (without use of curved-space arguments) 
and pointing out that these values of g are close to 
the value 5.1043 corresponding to the regular tetra- 
hedron. We should point out here that while the 
values for the mentioned t.c.p, structures range from 
5.1000 to 5.1111, the value for b.c.c, is 5.1414, sig- 
nificantly outside that range. 

We conclude, for the time being, that although the 
curved-space description may provide valuable 
insights for t.c.p, crystalline structures as well as for 
metallic glasses, that description does not provide as 
satisfactory an understanding of the Y & K principle 
as does the dihedral-angle principle in ordinary three- 
dimensional space. 

Presumably our dihedral-angle treatment can be 
extended to metallic glasses if the somewhat improb- 
able assumptions are made that such materials have 
only tetrahedral interstices, g values are limited to 5 
and 6, and coordination types are limited to the P, 
Q, R, and X types here described. It can probably 
be extended in an approximate way to metallic glasses 
not entirely conforming to these assumptions, and as 
well to crystalline alloy structures that are not ideally 
t.c.p., such as those mentioned in the I n t r o d u c t i o n .  

The inspiration for this work came during a visit 
to the CNRS Laboratoire de Cristallographie in 
Grenoble, France, made possible by a research grant 
(No. 0289/82) from the North Atlantic Treaty 
Organization Scientific Affairs Division. We are 
indebted to Drs E. F. Bertaut, D. Fruchart, and R. 
Fruchart of that laboratory for valuable discussions. 
We thank also Dr N. Rivier, Imperial College, Lon- 
don, for penetrating comments at a colloquium in 
Grenoble. 
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puter Center and in part on the authors'  Corona 
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Abstract 

The structure of the commensurate modulated phase 
(IV) of RbLiSO4 (RLS) was determined by single- 
crystal X-ray diffractometry at 446 K. Mr = 188.5, 
monoclinic, Plln,  a=9 .157(1) ,  b=5-316(1) ,  c=  
43.654(3)/~, 3,=89"97 (1) °, U=2125 A, 3, Z = 2 0 ,  
Dx = 2.95 Mg m -3, Cu Ka, A = 1.5418 ~ ,  /z = 
19.94 mm -l, F(000) = 1760, R = 0.091, wR = 0.045 
for 2191 independent reflexions (including 329 unob- 
served reflexions). The fivefold superstructure in the 
c direction is mainly caused by a rotation of the sulfate 
tetrahedra around c. In order to show the structural 
changes connected with the phase transitions 
difference Fourier maps and probability density func- 
tions (p.d.f.'s) of phases (I) (485 K, re-refined with 
anharmonic temperature factors), (III) (465 K) and 
(IV) were calculated and all existing orientation states 
of the SO4 groups obtained. Models of the phase 
transitions are discussed from a structural point of 
view. 

0108-7681/86/010011-06501.50 

Introduction 

In recent years the compounds MLiSO4 (M = NH4, 
Rb, Cs) have been the subject of many studies. Similar 
to such other A2BXa-type crystals as KaSeO4 (Iizumi, 
Axe, Shirane & Shimaoka, 1977) or Rb2ZnBr4 (Gesi 
& Iizumi, 1978), these substances undergo incom- 
mensurate-commensurate phase transitions and have 
ferroelectric and ferroelastic phases, respectively. 
Hahn, Lohre & Chung (1969) showed that these 
pseudohexagonal structures can be derived from a 
new type of tetrahedral framework with symmetry 
Icmm. Investigations on the system NH4LiSO4 (ALS) 
by Dollase (1969), Hildmann (1980) and Itoh, 
Ishikura & Nakamura (1981) exhibited the transi- 
tions: 

phase (I) (Pcmn) 
460 K 

, phase (II) (ferroelectric, Pc21n) 
283 K 

phase (III) (ferroelastic, P121/cl). 
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